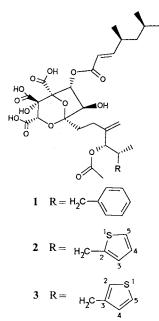
Notes

PRODUCTION OF ADDITIONAL SQUALESTATIN ANALOGUES BY DIRECTED BIOSYNTHESIS


RICHARD J. P. CANNELL, MICHAEL J. DAWSON, RICHARD S. HALE[†], RICHARD M. HALL, DAVID NOBLE, SEAN LYNN^{††} and NICHOLAS L. TAYLOR

Departments of Natural Products Discovery, [†]Protein Biochemistry and ^{††}Structural Chemistry, Glaxo Group Research Ltd., Greenford, Middlesex. UB6 0HE, U.K.

(Received for publication August 19, 1993)

The squalestatins (e.g. 1) are a group of structurally unique fungal metabolites produced by a species of *Phoma*. They are potent inhibitors of squalene synthase and consequently act as cholesterol-lowering agents^{1~3)}. These molecules are derived from two polyketide chains, one of which has benzoic acid as a starter unit with the remaining carbons derived from a four-carbon unit related to succinate, and from methionine⁴⁾. We have recently described the results of feeding a large number of

Fig. 1. Structures of $1 \sim 3$.

benzoic acid analogues to the producing organism with the aim of generating novel squalestatins. This work resulted in the production of a number of fluorinated squalestatins⁵⁾. In subsequent experiments, we fed further precursor analogues of a type other than those with a 6-membered aromatic ring. By this approach additional squalestatin analogues (**2** and **3**) were produced (Fig. 1). This paper describes the production, isolation and biological activity of these compounds.

The fermentation and feeding conditions were as previously described⁵⁾. Twenty seven compounds were tested as potential precursors (Table 1). Results using both HPLC and HPLC-MS indicated that two novel squalestatins were generated. These compounds were isolated from cultures fed with either 2-thiophene- or 3-thiophenecarboxylic acid. Extrac-

Table 1. Compounds fed.

a) Incorporated into squalestatin analogues.

	Analogue produced	Titre (mg/liter)
2-Thiophenecarboxylic acid	2	52
3-Thiophenecarboxylic acid	3	90
3(3-Thienyl)acrylic acid	3	87
3-Thiophenecarboxaldehyde	3	58

b) Not incorporated into squalestatin analogues.

Picolinic acid
Nicotinic acid
Isonicotinic acid
Phenylacetic acid
4-Fluorophenylacetic acid
2-Pyridinecarboxaldehyde
3-Pyridinecarboxaldehyde
4-Pyridinecarboxaldehyde
Cyclohexanecarboxylic acid
Cyclopentanecarboxylic acid
Cyclobutanecarboxylic acid
Cyclopropanecarboxylic acid
2-Norbornaneacetic acid
I-Naphthalenecarboxylic acid
2-Naphthalenecarboxylic acid
2-Pyrrolecarboxylic acid
4-Pyridazinecarboxylic acid
2-Furancarboxylic acid
3-Furancarboxylic acid
3-Thiopheneacetic acid
2-Nitro-4-thiophenecarboxylic acid
3-Chloro-2-thiophenecarboxylic acid
3-Bromo-2-thiophenecarboxylic acid

Fig. 2. Mass spectrum of 3.

On-line negative ion thermospray HPLC-MS was carried out as described previously⁵⁾. Both thienyl squalestatins gave the same characteristic fragmentation pattern shown below for 3.

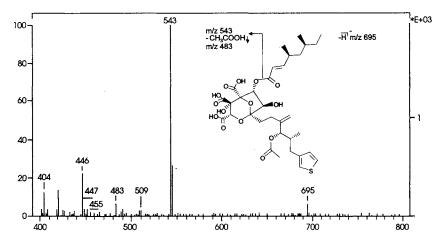


Table 2. ¹H NMR characterisation of thienyl substituted squalestatins.

Position	2	3
2	_	7.05 (dd, 3, 1 Hz, 1H)
3	6.83 (dd, 3, 1 Hz, 1H)	· _
4	6.90 (dd, 3, 5 Hz, 1H)	7.00 (dd, 5, 1 Hz, 1H)
5	7.16 (dd, 5, 1 Hz, 1H)	7.28 (dd, 3, 5 Hz, 1H)

¹H NMR spectra were recorded at 500 MHz on a Bruker AM500 spectrometer in MeOD- d_4 solution at 298 K. The following assignments are of the thienyl protons.

All other ¹H NMR resonances are similar to those of **1**.

tion conditions were as previously described⁵) except that 1 and 3 were separated by preparative HPLC (Spherisorb ODS2; MeCN-0.1 M NH₄H₂PO₄ $(45:55) + H_2SO_4$ (pH 3.5)) and 1 and 2 were separated by the same system adjusted to pH 3.2. 12 mg of 3 and 15.3 mg of 2 were isolated from 150 ml and 500 ml of culture broth, respectively. The former broth contained 3 and 1 in a ratio of approximately 1:1 and the latter contained 2 and 1 in a ratio of approximately 1:3. In both cases the utilisation of fed thiophene carboxylic acid was nearly 100%. Accurate mass negative ion static fast atom bombardment MS was performed on the deprotonated species of 2 and 3. The molecular ion of 2 ($(M-H)^{-}$) was measured at 695.237682 giving an error of 0.5 ppm from the calculated value of $C_{33}H_{44}O_{14}S$ (695.237353). The molecular ion of 3 $((M-H)^{-})$ was measured at 695.237303 giving an error of 0.1 ppm from the calculated value of

Table 3. Squalene synthase inhibition $(I_{50} (nM))$.

	Rat enzyme	Candida albicans enzyme
1	$4 \sim 22^{a}$	2~7ª
2	32	7
3	25	4

^a Range of values observed.

 $C_{33}H_{44}O_{14}S$. Structures were confirmed by ¹H NMR and the assignments of the thienyl protons are shown in Table 2. All other ¹H NMR resonances of **2** and **3** are similar to those of **1**. HPLC-MS also indicated that **3** was produced on feeding either 3(3-thienyl)acrylic acid or 3-thiophenecarboxalde-hyde (Table 1). This result is consistent with the involvement of the phenylalanine ammonia lyase pathway in the provision of squalestatin precursors⁴⁾. **2** and **3** were assayed for squalene synthase inhibitory activity by a method described previous-ly¹⁾ but neither showed any marked difference to **1** in their activity (Table 3).

References

- DAWSON, M. J.; J. E. FARTHING, P. S. MARSHALL, R. F. MIDDLETON, M. J. O'NEILL, A. SHUTTLEWORTH, C. STYLLI, R. M. TAIT, P. M. TAYLOR, H. G. WILDMAN, A. D. BUSS, D. LANGLEY & M. V. HAYES: The squalestatins, novel inhibitors of squalene synthase produced by a species of *Phoma*. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J. Antibiotics 45: 639~647, 1992
- 2) SIDEBOTTOM, P. J.; R. M. HIGHCOCK, S. J. LANE, P.

A. PROCOPIOU & N. S. WATSON: The squalestatins, novel inhibitors of squalene synthase produced by a species of *Phoma*. II. Structure elucidation. J. Antibiotics $45:648 \sim 658$, 1992

- BAXTER, A.; B. J. FITZGERALD, J. L. HUTSON, A. D. MCCARTHY, J. M. MOTTERAM, B. C. ROSS, M. SAPRA, M. A. SNOWDEN, N. S. WATSON, R. J. WILLIAMS & S. WRIGHT: Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol *in vivo*. J. Biol. Chem. 267: 11705~11708, 1992
- 4) JONES, C. A.; P. J. SIDEBOTTOM, R. J. P. CANNELL,

D. NOBLE & B. A. M. RUDD: The squalestatins, novel inhibitors of squalene synthase produced by a species of *Phoma*. III. Biosynthesis. J. Antibiotics 45: 1492 ~ 1498, 1992

5) CANNELL, R. J. P.; M. J. DAWSON, R. S. HALE, R. M. HALL, D. NOBLE, S. LYNN & N. L. TAYLOR: The squalestatins, novel inhibitors of squalene synthase produced by a species of *Phoma*. IV. Preparation of fluorinated squalestatins by directed biosynthesis. J. Antibiotics 46: 1381~1389, 1993